Note

Studies of the stability of reducing sugars towards trifluoroacetolysis: a method for specific elimination of 2-acetamido-2-deoxyhexose residues at reducing ends of oligosaccharides

Bo Nilsson and Sigfrid Svensson*

Department of Clinical Chemistry, University Hospital, S-221 85 Lund (Sweden)
(Received August 26th, 1977; accepted for publication, September 26th, 1977)

In studies of the scope of trifluoroacetolysis in structural carbohydrate chemistry, we have developed a new method for N-deacetylation of 2-acetamido-2-deoxy sugar derivatives¹, and also a new technique for the isolation of N- and O-glycosidically linked carbohydrate chains in glycoproteins², based upon the fact that most glycosidic bonds are stable² during trifluoroacetolysis and that proteins are degraded by transamidation. We now report on the stability of reducing sugars towards trifluoroacetolysis.

Treatment of pentoses, hexoses, or 6-deoxyhexoses with trifluoroacetic anhydride (TFAA)/trifluoroacetic acid (TFA) in the proportions 1:1 and 50:1, at 100° for 48 h, gave the corresponding pertrifluoroacetates in quantitative yields (Table I). When the proportions were 1:2, degradation occurred; this was more pronounced for the pentoses and the 6-deoxyhexoses, and was probably induced by acid-catalysed elimination of trifluoroacetic acid from the initially formed pertrifluoroacetates. 2-Deoxy-D-erythro-pentose and 2-deoxy-D-lyxo-hexose were rapidly destroyed under all of the above conditions. 2-Amino-2-deoxy-D-galactose was presumably first converted into its per-O- and -N-trifluoroacetylated derivative, which was largely stable in 50:1 TFAA/TFA but was degraded when the proportions were 1:1 and 1:2. 2-Acetamido-2-deoxy sugars were converted into their pertrifluoroacetates and then gradually transamidated to give the N-trifluoroacetates, which were stable in 50:1 TFAA/TFA but severely degraded by the 1:1 and 1:2 reagents. Thus, the presence of a 2-O-trifluoroacetyl group in the pertrifluoroacetates of reducing sugars is essential for stabilisation towards acid-catalysed degradation.

The finding that 2-acetamido-2-deoxy sugars were degraded by TFAA/TFA, under conditions where hexoses, pentoses, and most glycosides were stable, prompted an investigation of the behaviour of oligosaccharides having a 2-acetamido-2-deoxy sugar at the reducing end. Thus, α -D-Manp-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)-D-GlcNAc³ gave pertrifluoroacetylated α -D-Manp-(1 \rightarrow 3)-D-Man in nearly quantitative yields

^{*}To whom correspondence should be addressed.

170 NOTE

TABLE I
RECOVERY OF SUGARS AFTER TRIFLUOROACETOLYSIS UNDER DIFFERENT CONDITIONS AT 100° FOR 48 h

Sugar	Recovery (%)°		
	I:2 ^b	1:I ^b	50:1 ^b
D-Glucose	85	100	100
D-Mannose	96	100	100
D-Galactose	82	100	99
D-Xylose	82	99	100
D-Ribose	64	100	99
D-Arabinose	65	100	100
L-Fucose	45	100	100
L-Rhamnose	40	100	100
2-Deoxy-D-lyxo-hexose	0	0	0
2-Deoxy-D-erythro-pentose .	0	0	0
2-Acetamido-2-deoxy-D-glucose ^d	8	17	8 <i>5</i>
2-Acetamido-2-deoxy-D-mannose ^d	9	n.d.c	90
2-Amino-2-deoxy-D-galactose ^d	12	n.d.	80

[&]quot;Determined by g.l.c.-m.s. after O- and N-detrifluoroacetylation by reduction with sodium borodeuteride and reacetylation. Proportions of trifluoroacetic anhydride and trifluoroacetic acid (v/v). Not determined. When analyzed after O-detrifluoroacetylation with 50% aqueous acetic acid at room temperature for 1 h, followed by acetylation, only peracetylated 2-deoxy-2-trifluoroacetamido-hexoses were found in g.l.c.-m.s.

after trifluoroacetolysis with the 1:1 and 1:2 reagents, but in only 27% yield with the 50:1 reagent, which gave mainly the per-O- and -N-trifluoroacetylated trisaccharide derivative. Thus, the 4-O-substituted 2-acetamido-2-deoxy-D-glucose residue in the triasaccharide is more labile towards trifluoroacetolysis than is 2-acetamido-2-deoxy-D-glucose. This finding is expected, because the stabilizing effect of the 4-O-trifluoroacetyl group is lost. The specific elimination of reducing, 4-linked 2-acetamido-2-deoxy-D-glucose residues from oligosaccharides should be of value in structural carbohydrate chemistry. Preliminary results also suggest that reducing, 3-linked 2-acetamido-2-deoxy sugars are similarly eliminated, whereas the behaviour of 6-linked, reducing 2-acetamido-2-deoxy sugars is more complex.

EXPERIMENTAL

Concentrations were performed under reduced pressure at $\leq 40^{\circ}$ (bath). G.l.c. was performed on a Perkin-Elmer 3920 instrument equipped with a flame-ionization detector and (a) glass columns (2 m × 0.25 cm) packed with 3% of ECNSS-M on Chromosorb Q (for alditol acetates at 200°) and (b) SE-30 W.C.O.T. glass-capillary columns (25 m × 0.25 mm) (for 2-acetamido-2-deoxy- and 2-deoxy-2-trifluoroacetamido-hexitol derivatives at 220°, and for permethylated oligosaccharide alditols at 250°). For g.l.c.-m.s., a Varian MAT 311A instrument was used fitted with the appropriate column. Mass spectra were recorded at 70 eV with an ionization current of 3 mA, and an ion-source temperature of 150°. The mass spectra were processed on an on-line computer system (Spectrosystem 100, Varian MAT).

Trifluoroacetolysis of sugars. — The sugar (4 mg, accurately weighed) and myo-inositol (4 mg, as inert internal standard) were treated with TFAA/TFA (5 ml; 1:2, 1:1, or 50:1) at 100° for 48 h in a sealed glass tube. Each cooled mixture was concentrated to dryness, and a solution of the residue in methanol (5 ml) was concentrated to dryness. A solution of the product in 50% aqueous acetic acid was concentrated to dryness. The residue was then dissolved in water (5 ml) and treated with sodium borohydride (25 mg) to effect simultaneous N-detrifluoroacetylation and reduction. The resulting alditols were treated with acetic anhydride and pyridine, to give alditol acetates that were analysed by g.l.c.—m.s. (Table I).

Degradation of α -D-Manp- $(1\rightarrow 3)$ - β -D-Manp- $(1\rightarrow 4)$ -D-GlcNAc (1). — Mixtures of 1 (2.5 mg) and panose (2.5 mg, as stable internal standard) were treated with TFAA/TFA (5 ml; 1:2, 1:1, 7:1, 20:1, 40:1, and 50:1) at 100° for 48 h in sealed glass tubes. Each reaction mixture was cooled and concentrated. The resulting mixture of trifluoroacetates was treated with methanol and 50% aqueous acetic acid and concentrated to dryness as described above. After reduction with sodium borodeuteride and acetylation, the product was permethylated and analysed by g.l.c.-m.s. (Table II). The identity of permethylated α -D-Manp- $(1\rightarrow 3)$ - β -D-Manp- $(1\rightarrow 4)$ -GlcNAc-itol-1-d was demonstrated by comparison of retention time and mass spectrum with those of an authentic sample⁴. The identity of permethylated α -D-Manp- $(1\rightarrow 3)$ -D-Man-itol-1-d was indicated by its mass spectrum, which was typical⁵ for a hexp- $(1\rightarrow 3)$ -hex-itol-1-d.

TABLE II trifluoroacetolysis of α -D-Manp-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)-GlcNAc (1)

TFAA/TFAb	1°	α-D-Manp-(1→3)-D-Man ^c	
1:2	0	92	
1:1	0	96	
7:1	17	77	
20:1	23	67	
40:1	59	37	
50:1	67	27	

^aAt 100° for 48 h. ^bRelative proportions. ^cMol % obtained after trifluoroacetorysis, O- and N-detrifluoroacetylation, and re-N-acetylation; analysed as their permethylated alditol derivatives.

ACKNOWLEDGMENTS

The authors thank Ingemar Robertsson for excellent technical assistance, and the Swedish Medical Research Council (03X-4956) and the Medical Faculty, University of Lund, for financial support.

REFERENCES

- 1 B. NILSSON AND S. SVENSSON, Carbohydr. Res., 62 (1978) 377-380.
- 2 B. NILSSON AND S. SVENSSON, unpublished data.
- 3 N. E. NORDÉN, A. LUNDBLAD, S. SVENSSON, P. A. ÖCKERMAN, AND S. AUTIO, J. Biol. Chem., 248 (1973) 6210–6215.
- 4 A. LUNDBLAD, P. K. MASSON, N. E. NORDÉN, S. SVENSSON, AND P. A. ÖCKERMAN, Biomed. Mass Spectrom., 2 (1975) 285-287.
- 5 J. LÖNNGREN AND S. SVENSSON, Adv. Carbohydr. Chem. Biochem., 29 (1974) 41-106.